Parylene photonics enable future optical biointerfaces — ScienceDaily

Carnegie Mellon University’s Maysam Chamanzar and his team have invented an optical platform that will likely become the new standard in optical biointerfaces. He’s labeled this new field of optical technology “Parylene photonics,” demonstrated in a recent paper in Nature Microsystems and Nanoengineering.

There is a growing and unfulfilled demand for optical systems for biomedical applications. Miniaturized and flexible optical tools are needed to enable reliable ambulatory and on-demand imaging and manipulation of biological events in the body. Integrated photonic technology has mainly evolved around developing devices for optical communications. The advent of silicon photonics was a turning point in bringing optical functionalities to the small form-factor of a chip.

Research in this field boomed in the past couple of decades. However, silicon is a dangerously rigid material for interacting with soft tissue in biomedical applications. This increases the risk for patients to undergo tissue damage and scarring, especially

Read More
Read More