CO2 Incubators Market | Growth of Global Life Science Market to Boost the Market Growth

The global CO2 incubators market size is poised to grow by USD 100.29 million during 2020-2024, progressing at a CAGR of over 8% throughout the forecast period, according to the latest report by Technavio. The report offers an up-to-date analysis regarding the current market scenario, latest trends and drivers, and the overall market environment. The report also provides the market impact and new opportunities created due to the COVID-19 pandemic. Download a Free Sample of REPORT with COVID-19 Crisis and Recovery Analysis.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20201009005417/en/

Technavio has announced its latest market research report titled Global CO2 Incubator Market 2020-2024 (Graphic: Business Wire)

Cell culture plays a vital role in cancer research, protein therapeutics, and vaccine production. Also, it is important to maintain a sterile environment and natural condition of these cells while conducting cell culture. This results in an increased demand for

Read More
Read More

Scientist maps CO2 emissions for entire US to improve environmental policymaking — ScienceDaily

With intense wildfires in the western U.S. and frequent, intense hurricanes in the Gulf of Mexico, the nation is again affected by extreme weather-related events resulting from climate change. In response, cities, states and regions across the country are developing policies to reduce their emissions of greenhouse gases, chiefly carbon dioxide (CO2). Even though many state and local governments are committed to these goals, however, the emissions data they have to work with is often too general and too expensive to provide a useful baseline and target the most effective policy.

Professor Kevin Gurney of Northern Arizona University’s School of Informatics, Computing, and Cyber Systems today published results in the Journal of Geophysical Research detailing greenhouse gas emissions across the entire U.S. landscape at high space- and time-resolution with details on economic sector, fuel and combustion process.

Gurney, who specializes in atmospheric science, ecology and public policy, has

Read More
Read More

E. coli engineered to grow on CO2 and formic acid as sole carbon sources — ScienceDaily

Most biorefinery processes have relied on the use of biomass as a raw material for the production of chemicals and materials. Even though the use of CO2 as a carbon source in biorefineries is desirable, it has not been possible to make common microbial strains such as E. coli grow on CO2.

Now, a metabolic engineering research group at KAIST has developed a strategy to grow an E. coli strain to higher cell density solely on CO2 and formic acid. Formic acid is a one carbon carboxylic acid, and can be easily produced from CO2 using a variety of methods. Since it is easier to store and transport than CO2, formic acid can be considered a good liquid-form alternative of CO2.

With support from the C1 Gas Refinery R&D Center and the Ministry of Science and ICT, a research team led

Read More
Read More

The key to lowering CO2 emissions is made of metal — ScienceDaily

Carbon dioxide (CO2) levels are rising and our planet is heating up. What do we do? What if we used this excess CO2 as a raw material to produce things we need — similar to how plants use it to produce oxygen.

This is one thing artificial photosynthesis has set out to do.

Artificial photosynthesis is a chemical process that mimics the natural process of photosynthesis to convert sunlight, water, and carbon dioxide into useful things like carbohydrates and oxygen. The problem is that current technologies can only produce molecules with 1 carbon atom. These molecules are too weak to be used for the production of more complex materials. Standard experimental conditions have not been stable enough to allow for molecules with bonds of more than one carbon atom to form.

New research at Osaka City University has found that simply adding metal ions like aluminum and

Read More
Read More

Volcanic ash could help reduce CO2 associated with climate change — ScienceDaily

University of Southampton scientists investigating ways of removing carbon dioxide (CO2) and other greenhouse gases from our atmosphere believe volcanic ash could play an important role.

A team from the University’s School of Ocean and Earth Science has modelled the impact of spreading volcanic ash from a ship to an area of ocean floor to help amplify natural processes which lock away CO2 in the seabed. They found the technique has the potential to be cheaper, technologically simpler and less invasive than other techniques to remove harmful gases.

The researchers’ findings are published in the journal Anthropocene.

Human-caused climate change is one of the most pressing topics in contemporary science and politics. The impact of hundreds of years of greenhouse gas emissions are becoming clearer every year, with environmental changes including heatwaves, droughts, wildfires, and other extreme weather events.

“As a result of overwhelming evidence, politicians

Read More
Read More