Nobel laureate Jennifer Doudna: Gene editing could make a better future

UC Berkeley’s Graduate School of Journalism facilitated a video news conference and Q&A session with UC Berkeley’s Nobel Prize winner, Jennifer Doudna, this morning. Watch it here. (UC Berkeley video)

Rapid advances in gene-editing technology have a transformative potential to help cure disease and feed the world, but scientists must assure that the tools are not used for unethical purposes, new UC Berkeley Nobel laureate Jennifer Doudna told reporters today.

Following this morning’s announcement that she had won the 2020 Nobel Prize in Chemistry, Doudna detailed the promise of the CRISPR-cas9 technology at a Berkeley press conference, held remotely during the coronavirus pandemic and livestreamed for a global audience. She hailed the collaboration of her colleagues, both at Berkeley and internationally, for the work that won the world’s highest honor in science.

Her research began, and has continued, “with the vision of bringing genome editing to bear on problems facing

Read More
Read More

What is CRISPR? A close look at the gene editing technology that won the Chemistry Nobel prize

The Royal Swedish Academy of Sciences yesterday awarded the 2020 Nobel Prize in Chemistry to Emmanuelle Charpentier and Jennifer Doudna for their work on CRISPR, a method of genome editing.

A genome is the full set of genetic “instructions” that determine how an organism will develop. Using CRISPR, researchers can cut up DNA in an organism’s genome and edit its sequence.

CRISPR technology is a powerhouse for basic research and is also changing the world we live in. There are thousands of research papers published every year on its various applications.

These include accelerating research into cancers, mental illness, potential animal to human organ transplants, better food production, eliminating malaria-carrying mosquitoes and saving animals from disease.

Charpentier is the director at the Max Planck Institute for Infection Biology in Berlin, Germany and Doudna is a professor at the University of California, Berkeley. Both played a crucial role in demonstrating how

Read More
Read More

A method for genome editing — ScienceDaily

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2020 to Emmanuelle Charpentier, Max Planck Unit for the Science of Pathogens, Berlin, Germany, and Jennifer A. Doudna, University of California, Berkeley, USA “for the development of a method for genome editing.”

Genetic scissors: a tool for rewriting the code of life

Emmanuelle Charpentier and Jennifer A. Doudna have discovered one of gene technology’s sharpest tools: the CRISPR/Cas9 genetic scissors. Using these, researchers can change the DNA of animals, plants and microorganisms with extremely high precision. This technology has had a revolutionary impact on the life sciences, is contributing to new cancer therapies and may make the dream of curing inherited diseases come true.

Researchers need to modify genes in cells if they are to find out about life’s inner workings. This used to be time-consuming, difficult and sometimes impossible work. Using the CRISPR/Cas9 genetic

Read More
Read More

CRISPR gene editing pioneers win the 2020 Nobel Prize in Chemistry

CRISPR gene editing promises to revolutionize medical science, and two of its pioneers are getting a prestigious award for their efforts. Emmanuelle Charpentier (shown at left) and Jennifer Doudna (right) have received the 2020 Nobel Prize in Chemistry for their roles in discovering the CRISPR/Cas9 “genetic scissors” used to cut DNA. Charpentier found the key tracrRNA molecule that bacteria use to cut and disable viruses, and collaborated with RNA expert Doudna to eventually ‘reprogram’ the scissors to cut any DNA molecule at a specific point, making the gene editing method viable.

As with some scientific discoveries, there’s some controversy. While the team including Charpentier and Doudna published its work in June 2012, seven months before a Broad Institute-led group released its own findings, it didn’t include certain aspects Broad used when it started patenting gene editing methods in 2014. That led to a patent battle that’s still raging today, with

Read More
Read More

Nobel Prize in Chemistry awarded for CRISPR genome editing to Emmanuelle Charpentier and Jennifer A. Doudna

The Nobel Prize in Chemistry has been awarded to Emmanuelle Charpentier and Jennifer A. Doudna for the development of a method for genome editing.



Jennifer Doudna, Emmanuelle Charpentier posing for the camera: The American biochemist Jennifer A. Doudna (left) and French microbiologist Emmanuelle Charpentier, pictured together in 2016.


© Alexander Heinl/picture alliance/Getty Images
The American biochemist Jennifer A. Doudna (left) and French microbiologist Emmanuelle Charpentier, pictured together in 2016.

They discovered one of gene technology’s sharpest tools: the CRISPR/Cas9 genetic scissors. Using these, researchers can change the DNA of animals, plants and micro-organisms with extremely high precision.

Before announcing the winners on Wednesday, Göran K. Hansson, secretary-general for the Royal Swedish Academy of Sciences, said that this year’s prize was about “rewriting the code of life.”

The CRISPR/Cas9 gene editing tools have revolutionized the molecular life sciences, brought new opportunities for plant breeding, are contributing to innovative cancer therapies and may make the dream of curing inherited diseases come true, according to a press release from the Nobel committee.



a close up of a book: Doudna and Charpentier are the first two women to jointly win the chemistry prize.


© Niklaus Elmehed/Nobel Prize
Doudna

Read More
Read More

Jennifer Doudna’s New Gene Editing Company Launches With A $20 Million Round To Develop Genetic Medicines

What if you had a tool to change the genetic instructions that cause disease?

That’s what San Francisco-based Scribe Therapeutics hopes to do with its next-generation platform for gene editing.

Today, the company announced a collaboration with Biogen to develop CRISPR-based genetic medicines for neurological diseases, including Amyotrophic Lateral Sclerosis (ALS).

CRISPR, you may remember, is a powerful tool used to control the genes (or genetic instructions) that are active in plants, animals, and even humans. With CRISPR gene editing, researchers can “silence” undesirable traits, and, potentially, add desirable traits. 

Over the past few years, CRISPR gene editing has been used to reduce the severity of genetic deafness and treat sickle-cell anemia in mice. Today, CRISPR is considered

Read More
Read More