Silk fibers improve bioink for 3D-printed artificial tissues and organs — ScienceDaily

How do you test, in early-stage research, whether a potential pharmaceutical effectively targets a human tumor, organ, or some other part of the body? How do you grow a new hand or some other body part? Researchers are in the early stages of using 3D cell printing technology to make developments like these happen. A standard way — currently unavailable — to fix the cells in place after printing would help researchers avoid having to ‘reinvent the wheel’ in every new investigation.

In a study recently published in Materials Today Bio, researchers from Osaka University have used silk nanofibers obtained by mechanical disintegration to enhance the printing process without damaging the cells or cell assemblies. An attractive point of silk for this application is that silk is believed to be a safe material for humans. This development will help bring 3D cell printing research out of the laboratory and

Read More
Read More

Physicists and chemists engineer optical fibers with 2D materials — ScienceDaily

At the latest since the Nobel Prize in Physics was awarded for research on graphene in 2010, 2D materials — nanosheets with atomic thickness — have been a hot topic in science.

This significant interest is due to their outstanding properties, which have enormous potential for a wide variety of applications. For instance, combined with optical fibres, 2D materials can enable novel applications in the areas of sensors, non-linear optics, and quantum technologies. However, combining these two components has so far been very laborious. Typically, the atomically thin layers had to be produced separately before being transferred by hand onto the optical fibre. Together with Australian colleagues, Jena researchers have now succeeded for the first time in growing 2D materials directly on optical fibres. This approach significantly facilitates manufacturing of such hybrids. The results of the study were reported recently in the journal on materials science Advanced Materials.

Growth

Read More
Read More

Exploring the effect of rainfall on pine needles may lead to future fibers that are extremely water-repellent. — ScienceDaily

If you have ever hiked in the woods and been surrounded by the sight and smell of pine trees, you may have taken a closer look at pine needles and wondered how their shape, material properties, and surface wettability are all influenced by rainfall.

In Physics of Fluids, from AIP Publishing, researchers at the University of Central Florida are currently probing how well pine needles allay the impact of rain beneath the tree. Andrew K. Dickerson and Amy P. Lebanoff explored the impact of raindrops onto fixed, noncircular fibers of Pinus palustris, aka the longleaf pine, by using high-speed videography to capture the results.

“Drops impacting fixed fibers are greatly deformed and split apart,” said Dickerson. “As expected, the breakup of the drop and the force felt by the fiber is dependent on drop size and speed.”

Impact force and the shape of the resulting lobe of water also

Read More
Read More