New method generates precisely controlled graphene microbubbles with perfectly spherical curvature for lenses — ScienceDaily

Tiny bubbles can solve large problems. Microbubbles — around 1-50 micrometers in diameter — have widespread applications. They’re used for drug delivery, membrane cleaning, biofilm control, and water treatment. They’ve been applied as actuators in lab-on-a-chip devices for microfluidic mixing, ink-jet printing, and logic circuitry, and in photonics lithography and optical resonators. And they’ve contributed remarkably to biomedical imaging and applications like DNA trapping and manipulation.

Given the broad range of applications for microbubbles, many methods for generating them have been developed, including air stream compression to dissolve air into liquid, ultrasound to induce bubbles in water, and laser pulses to expose substrates immersed in liquids. However, these bubbles tend to be randomly dispersed in liquid and rather unstable.

According to Baohua Jia, professor and founding director of the Centre for Translational Atomaterials at Swinburne University of Technology, “For applications requiring precise bubble position and size, as well as high

Read More
Read More

Atomic Motion Of Graphene Generates Limitless Power, Study Finds

KEY POINTS

  • Study shows graphene moves in a back and forth manner similar to how electrons behave in a circuit
  • Physicists invent a circuit that can convert energy from graphene into an electrical current
  • The study result has became significant in today’s search for a clean energy source

The world may soon have a clean and limitless, energy source powered by a circuit that harvests electricity from the atomic motion of graphene. The technology comes in the form of small chips that have the potential of replacing disposable energy sources and saving people from the lifetime purchase of small batteries. 

A team of physicists from the University of Arkansas has presented their invention of a circuit that can capture the thermal motion of graphene and convert it into an electrical current. The study, published in the journal Physical Review E, is built upon a finding three years ago that first

Read More
Read More

Physicists build circuit that generates clean, limitless power from graphene

Physicists build circuit that generates clean, limitless power from graphene
Credit: University of Arkansas

A team of University of Arkansas physicists has successfully developed a circuit capable of capturing graphene’s thermal motion and converting it into an electrical current.


“An energy-harvesting circuit based on graphene could be incorporated into a chip to provide clean, limitless, low-voltage power for small devices or sensors,” said Paul Thibado, professor of physics and lead researcher in the discovery.

The findings, published in the journal Physical Review E, are proof of a theory the physicists developed at the U of A three years ago that freestanding graphene—a single layer of carbon atoms—ripples and buckles in a way that holds promise for energy harvesting.

The idea of harvesting energy from graphene is controversial because it refutes physicist Richard Feynman’s well-known assertion that the thermal motion of atoms, known as Brownian motion, cannot do work. Thibado’s team found that at room temperature the thermal motion of

Read More
Read More