Atomic Motion Of Graphene Generates Limitless Power, Study Finds

KEY POINTS

  • Study shows graphene moves in a back and forth manner similar to how electrons behave in a circuit
  • Physicists invent a circuit that can convert energy from graphene into an electrical current
  • The study result has became significant in today’s search for a clean energy source

The world may soon have a clean and limitless, energy source powered by a circuit that harvests electricity from the atomic motion of graphene. The technology comes in the form of small chips that have the potential of replacing disposable energy sources and saving people from the lifetime purchase of small batteries. 

A team of physicists from the University of Arkansas has presented their invention of a circuit that can capture the thermal motion of graphene and convert it into an electrical current. The study, published in the journal Physical Review E, is built upon a finding three years ago that first

Read More
Read More

Graphene-based circuit yields clean, limitless power

Oct. 2 (UPI) — Scientists have developed a new graphene-based circuit capable of producing clean, limitless power. Researchers suggest the energy-harvesting circuit — described Friday in the journal Physical Review E — could be used to power small, low-voltage devices and sensors.

The circuit’s ability confirms the theory — developed by the study’s authors, a group of physicists at the University of Arkansas — that micron-sized sheets of freestanding graphene naturally move in a way conducive to energy harvesting.

The breakthrough also contradicts the assertion by Richard Feynman that so-called Brownian motion, the thermal motion of atoms, cannot perform work. But lab tests showed the Brownian motion of atoms in freestanding sheets of graphene can generate an alternating current.

Famously, physicist Léon Brillouin proved that a single diode, a one-way electrical gate, added to a circuit was not sufficient to turn Brownian motion into energy. The team of physicists at

Read More
Read More

Physicists build circuit that generates clean, limitless power from graphene

Physicists build circuit that generates clean, limitless power from graphene
Credit: University of Arkansas

A team of University of Arkansas physicists has successfully developed a circuit capable of capturing graphene’s thermal motion and converting it into an electrical current.


“An energy-harvesting circuit based on graphene could be incorporated into a chip to provide clean, limitless, low-voltage power for small devices or sensors,” said Paul Thibado, professor of physics and lead researcher in the discovery.

The findings, published in the journal Physical Review E, are proof of a theory the physicists developed at the U of A three years ago that freestanding graphene—a single layer of carbon atoms—ripples and buckles in a way that holds promise for energy harvesting.

The idea of harvesting energy from graphene is controversial because it refutes physicist Richard Feynman’s well-known assertion that the thermal motion of atoms, known as Brownian motion, cannot do work. Thibado’s team found that at room temperature the thermal motion of

Read More
Read More