Ancient lizard’s long, crocodile-like snout suggests it carved out a niche in a competitive marine ecosystem — ScienceDaily

A new species of an ancient marine reptile evolved to strike terror into the hearts of the normally safe, fast-swimming fish has been identified by a team of University of Alberta researchers, shedding light on what it took to survive in highly competitive ecosystems.

Gavialimimus almaghribensis, a new type of mosasaur, was catalogued and named by an international research team led by master’s student Catie Strong, who performed the research a year ago as part of an undergrad honours thesis guided by vertebrate paleontologist Michael Caldwell, professor in the Faculty of Science, along with collaborators from the University of Cincinnati and Flinders University.

More than a dozen types of mosasaur — which can reach 17 metres in length and resemble an overgrown komodo dragon — ruled over the marine environment in what is now Morocco at the tail end of the Late Cretaceous period between 72 and 66 million

Read More
Read More

Recent findings suggest the repeated evolution of similar traits in island lizards was not channelled by developmental responses to the environment, as commonly thought — ScienceDaily

Scientists have challenged a popular theory behind the evolution of similar traits in island lizards, in a study published recently in eLife.

The findings in Greater Antillean Anolis lizards provide insights on why creatures often evolve similar physical features independently when living in similar habitats. They suggest that the role of developmental plasticity in shaping adaptive evolution may be less important than commonly thought.

Developmental plasticity refers to how development responds to the environment, in particular the way that an organism’s genetic constitution (or genotype) interacts with its environment during development to produce a particular set of characteristics (or phenotype).

“Anolis lizards that live on all four of the Greater Antillean islands have independently and repeatedly evolved six different body types for maneuvering through their given habitat,” says lead author Nathalie Feiner, Researcher at the Department of Biology, Lund University, Sweden. “As a result, they make a great model

Read More
Read More