Seismic sound waves crossing the deep ocean could be a new thermometer

A seismometer on the atoll of Diego Garcia (left) can calculate ocean temperature with earthquakes near Sumatra (right).
Enlarge / A seismometer on the atoll of Diego Garcia (left) can calculate ocean temperature with earthquakes near Sumatra (right).

Geophysics has shown that precise measurements and a little modeling can perform wonders, like showing us the detailed structure of the Earth’s interior despite the fact that it is inaccessibly buried beneath hundreds of kilometers of rock. This is possible because seismic waves produced by earthquakes subtly change velocity or direction as they pass through different materials. A new paper shows that something similar can actually measure small temperature changes in the deep ocean.

An idea to use acoustic waves from man-made sources was actually floated several decades ago but died out after some trials. A team led by Wenbo Wu at the University of Toronto realized that earthquakes could be taken advantage of in the same way, removing the expensive logistics of constantly setting off booms to get

Read More
Read More

Seismic data explains continental collision beneath Tibet — ScienceDaily

In addition to being the last horizon for adventurers and spiritual seekers, the Himalaya region is a prime location for understanding geological processes. It hosts world-class mineral deposits of copper, lead, zinc, gold and silver, as well as rarer elements like lithium, antimony and chrome, that are essential to modern technology. The uplift of the Tibetan plateau even affects global climate by influencing atmospheric circulation and the development of seasonal monsoons.

Yet despite its importance, scientists still don’t fully understand the geological processes contributing to the region’s formation. “The physical and political inaccessibility of Tibet has limited scientific study, so most field experiments have either been too localized to understand the big picture or they’ve lacked sufficient resolution at depths to properly understand the processes,” said Simon Klemperer, a geophysics professor at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth).

Now, new seismic data gathered by Klemperer and

Read More
Read More