Providing new technologies for vaccine development
Credit: Design_Cells/Shutterstock

Vaccines, which help the body recognize infectious microorganisms and stage a stronger and faster response, are made up of proteins that are specific to each type of microorganism. In the case of a virus, viral proteins—or antigens—can sometimes be attached to a protein scaffold to help mimic the shape of the virus and elicit a stronger immune response. Using scaffolds to approximate the natural configuration of the antigen is an emerging approach to vaccine design.

A team of scientists led by David Baker at the University of Washington developed a method to design artificial proteins to serve as a framework for the viral antigens. Their study was published recently in the journal eLife. Berkeley Lab scientists collected data at the Advanced Light Source to visualize the atomic structure and determine the dynamics of the designed scaffolds.

“When bound, the scaffolds assume predicted geometries, which more closely approximate the virus shape and thereby maximize the immune response,” said Banu Sankaran, a research scientist in the Molecular Biophysics and Integrated Bioimaging (MBIB) Division. “It was exciting to collaborate on this method to predictably design frameworks, which could lead to more effective vaccines, especially for viruses that we don’t have a scaffold for.”


Engineers use ‘DNA origami’ to identify vaccine design rules


More information:
George Ueda et al. Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens, eLife (2020). DOI: 10.7554/eLife.57659

Journal information:
eLife

Provided by
Lawrence Berkeley National Laboratory

Citation:
Providing new technologies for vaccine development (2020, October 1)
retrieved 1 October 2020
from https://medicalxpress.com/news/2020-10-technologies-vaccine.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Source Article