Glycans in the SARS-CoV-2 spike protein play active role in infection

Glycans in the SARS-CoV-2 spike protein play active role in infection
In this illustration, glycans (dark blue) coat the SARS-CoV-2 spike protein (light blue), which is anchored in the viral envelope (colorful bilayer on bottom). Credit: Adapted from ACS Central Science 2020, DOI: 10.1021/acscentsci.0c01056

As the COVID-19 pandemic rages on, researchers are working overtime to develop vaccines and therapies to thwart SARS-CoV-2, the virus responsible for the disease Many efforts focus on the coronavirus spike protein, which binds the angiotensin-converting enzyme 2 (ACE2) on human cells to allow viral entry. Now, researchers reporting in ACS Central Science have uncovered an active role for glycans—sugar molecules that can decorate proteins—in this process, suggesting targets for vaccines and therapies.


Before the SARS-CoV-2 spike protein can interact with ACE2 on a human cell, it changes shape to expose its receptor binding domain (RBD), the part of the protein that interacts with ACE2. Like many viral proteins, the SARS-CoV-2 spike protein has a thick coat

Read More
Read More