New Technology Allows Circuits To Be Printed Directly On The Skin

Sensors printed directly on the skin have been inching closer to commercial reality in recent years. The dream of highly sensitive sensors could have a wide array of applications, from robotics to medicine, but the field has been limited by its method of circuit printing. Currently, printing circuits directly on the skin requires a lot of heat – something the skin isn’t generally fond of.

Now, researchers believe they may have solved this problem. A team from Penn State University have developed a method of fabricating high-performance circuitry directly on skin without heat, according to a study published in ACS Applied Materials and Interfaces.

While flexible sensors already exist and have applications in future physiological monitoring, applying that technology to the skin has remained an issue for scientists. If this process is viable on a large scale, it may pave the way for the technology to help patients with various

Read More
Read More

High-speed low-power printed transistors could lead to new display technologies — ScienceDaily

The chances are you are reading these words on a smartphone or computer screen. For around the last 10 years, these types of screens have been based on a display technology composed of so-called thin film transistors. These are inorganic transistors which require very little power, and they have proven themselves very capable given their widespread adoption. But they have some limits which researchers have been busy trying to overcome.

“We explore new ways to improve upon thin film transistors, such as new designs or new methods of manufacture,” said Gyo Kitahara, a Ph.D. student from the Department of Applied Physics. “Organic thin film transistors, for example, have a bright future in LCD screen devices. Compared to the inorganic kind currently used, we expect the organic kind to be useful in low-cost, large-area, lightweight and wearable electronic products, especially by using printing-based production technologies.”

The idea of organic thin film

Read More
Read More