Columbia leads effort to develop a quantum simulator

Columbia leads effort to develop a quantum simulator
Columbia is one of 11 institutions nationwide to receive a Phase One National Science Foundation Convergence Accelerator award for quantum technology. The program is designed to foster multidisciplinary, cross-sector research in emerging areas of critical societal importance. Credit: NSF

Quantum technologies—simulators and computers specifically—have the potential to revolutionize the 21st century, from improved national defense systems to drug discovery to more powerful sensors and communication networks.


But the field still needs to make major advances before quantum computing can surpass existing tools to process information and live up to its promise.

A multidisciplinary research team led by Columbia University is in a position to bring quantum technology out of the lab into real-world applications.

The team has received a $1 million National Science Foundation (NSF) Convergence Accelerator award to build a quantum simulator, a device that can solve problems that are difficult to simulate on classical computers. The project includes

Read More
Read More

Spin clean-up method brings practical quantum computers closer to reality — ScienceDaily

Quantum computers are the new frontier in advanced research technology, with potential applications such as performing critical calculations, protecting financial assets, or predicting molecular behavior in pharmaceuticals. Researchers from Osaka City University have now solved a major problem hindering large-scale quantum computers from practical use: precise and accurate predictions of atomic and molecular behavior.

They published their method to remove extraneous information from quantum chemical calculations on Sept. 17 as an advanced online article in Physical Chemistry Chemical Physics, a journal of the Royal Society of Chemistry.

“One of the most anticipated applications of quantum computers is electronic structure simulations of atoms and molecules,” said paper authors Kenji Sugisaki, Lecturer and Takeji Takui, Professor Emeritus in the Department of Chemistry and Molecular Materials Science in Osaka City University’s Graduate School of Science.

Quantum chemical calculations are ubiquitous across scientific disciplines, including pharmaceutical therapy development and materials research. All of

Read More
Read More

New possibilities for working with quantum information — ScienceDaily

Small particles can have an angular momentum that points in a certain direction — the spin. This spin can be manipulated by a magnetic field. This principle, for example, is the basic idea behind magnetic resonance imaging as used in hospitals. An international research team has now discovered a surprising effect in a system that is particularly well suited for processing quantum information: the spins of phosphorus atoms in a piece of silicon, coupled to a microwave resonator. If these spins are cleverly excited with microwave pulses, a so-called spin echo signal can be detected after a certain time — the injected pulse signal is re-emitted as a quantum echo. Surprisingly, this spin echo does not occur only once, but a whole series of echoes can be detected. This opens up new possibilities of how information can be processed with quantum systems.

The experiments were carried out at the Walther-Meissner-Institute

Read More
Read More

New technology lets quantum bits hold information for 10,000 times longer than previous record — ScienceDaily

Quantum bits, or qubits, can hold quantum information much longer now thanks to efforts by an international research team. The researchers have increased the retention time, or coherence time, to 10 milliseconds — 10,000 times longer than the previous record — by combining the orbital motion and spinning inside an atom. Such a boost in information retention has major implications for information technology developments since the longer coherence time makes spin-orbit qubits the ideal candidate for building large quantum computers.

They published their results on July 20 in Nature Materials.

“We defined a spin-orbit qubit using a charged particle, which appears as a hole, trapped by an impurity atom in silicon crystal,” said lead author Dr. Takashi Kobayashi, research scientist at the University of New South Wales Sydney and assistant professor at Tohoku University. “Orbital motion and spinning of the hole are strongly coupled and locked together. This is

Read More
Read More